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Abstract

We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human
heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber
directions. With this anatomical model, electrophysiological simulations can be performed on a rectangular coordinate grid.
We apply our method to study the effect of fiber rotation and electrical anisotropy of cardiac tissue (i.e., the ratio of the
conductivity coefficients along and across the myocardial fibers) on wave propagation using the ten Tusscher–Panfilov
(2006) ionic model for human ventricular cells. We show that fiber rotation increases the speed of cardiac activation and
attenuates the effects of anisotropy. Our results show that the fiber rotation in the heart is an important factor underlying
cardiac excitation. We also study scroll wave dynamics in our model and show the drift of a scroll wave filament whose
velocity depends non-monotonically on the fiber rotation angle; the period of scroll wave rotation decreases with an
increase of the fiber rotation angle; an increase in anisotropy may cause the breakup of a scroll wave, similar to the mother
rotor mechanism of ventricular fibrillation.

Citation: Pravdin SF, Dierckx H, Katsnelson LB, Solovyova O, Markhasin VS, et al. (2014) Electrical Wave Propagation in an Anisotropic Model of the Left Ventricle
Based on Analytical Description of Cardiac Architecture. PLoS ONE 9(5): e93617. doi:10.1371/journal.pone.0093617

Editor: Alena Talkachova, University of Minnesota, United States of America

Received October 3, 2013; Accepted February 27, 2014; Published May 9, 2014

Copyright: � 2014 Pravdin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Presidium of Urals Branch of the Russian Academy of Sciences (project 12-M-14-2009), the Flemish Community of
Belgium (HD’s fellowship and grant 1F2B8M/JDW/2010-2011/10-BTL-RUS-01), Ghent University (grant 01SF1511), the Agreement 211 between the Government of
RF and UrFU #02.A03.21.0006, the program "State Support of the Leading Scientific Schools" (NS-4538.2014.1), the Russian Foundation for Basic Research (grant
13-01-96048) and the Government of the Sverdlovsk Region. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: A.V. Panfilov is a PLOS ONE Editorial Board member. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing
data and materials.

* E-mail: sergey.pravdin@ugent.be (SFP); alexander.panfilov@ugent.be (AVP)

Introduction

The modeling of cardiac electrical function is a well-established

area of research that began with early models of cardiac cells

developed by D. Noble [1].

The importance of modeling in cardiology comes from the

widespread prevalence of cardiac disease. For example, sudden

cardiac death is the leading cause of death in the industrialized

world, accounting for more than 300,000 victims annually in the

US alone [2]. In most cases, sudden cardiac death is a result of

cardiac arrhythmias that occur in the ventricles of the human

heart [2].

When studying cardiac arrhythmias, it is important to

understand that they often occur at the level of the whole organ

and in these situations cannot be reproduced in single cells.

Therefore, it is very important to model cardiac arrhythmias at the

tissue level, preferably using an anatomically accurate represen-

tation of the heart. Compared to modeling at the single-cell level,

anatomical modeling started much more recently [3,4]. Using

anatomical models, researchers have been able to obtain

important results on the 3-D organization of cardiac arrhythmias

in animal [5] and human [6] hearts. Moreover, the defibrillation

process has been investigated [7], and the effects of mechano-

electrical coupling on cardiac propagation have recently been

modeled[8,9]. Multi-scale anatomical cardiac modeling is becom-

ing increasingly prominent in medical and pharmaceutical

research [10].

In a broad sense, an anatomical model of the heart is a

combination of models of cardiac cells and anatomical data. The

development of models of the electrical and mechanical functions

of cardiac cells is a well-established area of research, and many

models have been developed, including models of the human

cardiac cells [11–20]. The anatomical data necessary for cardiac

modeling include not only the heart’s geometry but also its

anisotropic properties. Although the geometry of the heart can be

obtained from routine clinical procedures such as MRI or CT

scans [21,22], anisotropy data are much more challenging to

acquire. Currently, the acquisition can be done on explanted

hearts only, using either direct histological measurements or time-

demanding DT-MRI scans [23–26]. In addition to experimental

noise, even perfect measurements will grant only the particular

anisotropy of the imaged heart. Thus, to study the effects of
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anisotropy on wave propagation, one needs to vary the anisotropic

properties and to separate the anisotropy effects from other

factors. All these questions can be addressed with the development

of models that account for the anisotropy of the heart using

analytical or numerical tools.

In a previous article [27], we described an axisymmetric model

of the left ventricle (LV) of the human heart. In the model, we

represented the LV shape (including positions of cardiac fibers) as

analytical functions of special curvilinear coordinates defined on a

rectangular domain. Our model allowed the generation of not only

a default architecture of anisotropy closest to the reality but also

intermediate architectures that can be used to study the effects of

any specific element of anisotropy on wave propagation in the

heart.

In this paper, we build on our previous approach in two ways.

First, we develop a numeral scheme for the integration of

equations for wave propagation in our anatomical model of the

LV, which is the best possible way to account for anisotropy. In

particular, we develop a model on a rectangular domain and

represent anisotropy and the LV shape by means of parameter

changes. Second, we vary the geometry and anisotropy parameters

to study how the rotation of the fiber orientation affects wave

propagation and show that rotational anisotropy accelerates the

spread of electrical excitation in the heart. We also study the

behavior of scroll waves and their filaments. We show that the

scroll waves drift and we calculate their drift velocity and period of

rotation depending on the fiber rotation angle and the diffusion

coefficients ratio.

Model Description

Geometrical model of the LV
In our model, the LV is represented as a body of revolution

around the vertical axis Oz with the shape fitted to experimental

data (for details, see [27]). A section of the LV is shown in Fig. 1.

The rotation of the blue line delineates the epicardial surface,

while the rotation of the red line yields the endocardial surface of

the LV.

In our model, each point of the LV has three local coordinates

(c, y, w). The coordinate c (c0#c#c1) gives us points between the

endo- and epicardial surfaces in Fig. 1, i.e., it is a measure for

transmural depth; the coordinate y (0#y#p/2) is explained in

Fig. 1; and the coordinate w (0#w,2p) is the rotation angle

around the vertical axis Oz. The local coordinates are linked with

the cylindrical coordinate system (CS) (r, Q, z) by the following

formulae:

r~ rbz 1{cð Þlð ÞEc yð Þ, ð1Þ

Q~w,

z~ zbz 1{cð Þhð Þ 1{ sin yð Þz c{1ð Þh, ð2Þ

with:

Ec~E cos yz 1{Eð Þ 1{ sin yð Þ:

Below, we also use

Es~E sin yz 1{Eð Þ cos y:

The physical meaning of the parameters is as follows: rb is the LV

cavity radius on the LV equator, zb is the LV cavity depth, l is the

LV wall thickness on the LV equator, h is the LV wall thickness on

the LV apex, and E[ 0,1½ � is a dimensionless parameter influencing

the conicity-ellipticity characteristic of the LV shape. In this

system, c = c0 gives the epicardium and c = c1 gives the endocar-

dium; the value y = 0 describes the upper (basal) boundary of the

LV.

Following Pettigrew’s idea [28] about spiral surfaces and

semicircle chords mapping on the surfaces, our LV model consists

of spiral surfaces on which a set of curves is defined. The details

are described in our previous work [27] and are summarized in

Appendices A (spiral surfaces construction) and B (fiber equations).

In Figs. 2 and 3, we show common views of spiral surfaces and the

fibers inside them.

We demonstrated in [27] that the model approximates the real

fiber orientation field in the LV reasonably well. A comparison of

true fiber angle a and helix angle a1 with MRI data showed that

fiber architecture in the equatorial region of the heart was well

reproduced in our anatomical model. In the middle (by height)

and apical areas, the angles were reproduced both qualitatively

and quantitatively well; the difference between the model and the

experimental data was not more than 25u.
Overall, we can consider the anatomical model as a map from a

rectangular domain c0#c #c1; 0#y#p/2; 0#w,2p to the shape

of LV with anisotropy explicitly given by Eqs. (B.1)–(B.3). The

total fiber rotation angle Da1 is defined as the difference between

the epicardial and endocardial helix angles a1 measured at the LV

basal zone y = p/8 (see [29] for details). It can be varied by

changing the values of the parameters c0 and c1:

Figure 1. A radial section of the endocardial (solid red line) and
epicardial (dashed blue line) surfaces of the LV model, from
[27].
doi:10.1371/journal.pone.0093617.g001
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a1(c�,y�)~ dp,prnvp,prnvð ÞDc~c�,y~y�,W~0,

Da1(c0,c1)~a1(c1,p=8){a1(c0,p=8),
ð3Þ

where p is the tangent vector to the parallel c = const, y = const at

the point c = c*, y = y*, w = 0 (the geometric model is axisymmet-

ric; therefore the choice of w is arbitrary); n is the normal vector to

the epicardium passing through the same point; v is the fiber

direction vector (it is defined by Eq. (B.1)–(B.3)); pr is the

projection operator; and du,wu,wð Þ denotes the angle between the

vectors u and w. We have chosen the value y = p/8 because in

this case, the total fiber rotation angle changes uniformly enough

depending on the values of c0,1 we use (see Table 1 and section

‘‘Parameter values’’ below). For short, below we will denote

Da1(c0, c1) as a without argument. We use it in the present study to

investigate the effect of fiber rotation on wave propagation in the

heart.

Electrophysiological model
To describe the excitation of cardiac tissue, we use the detailed

ionic model for human ventricular cells from [6,11]. The model

uses reaction-diffusion equations to describe the evolution of the

transmembrane potential u = u(r, t):

Lu

Lt
~div(D grad u){

Iion

Cm

, ð4Þ

Iion~IKrzIKszIK1zItozINazIbNazICaLz

IbCazINaKzINaCazIpCazIpK :
ð5Þ

Here, the intracellular processes are captured by Iion = Iion(r, t)

which is the sum of the ionic transmembrane currents; Cm is the

capacitance of the cell membrane. The locally varying diffusion

matrix D accounts for myofiber anisotropy. As in [6], the diffusion

matrix D = (Dij) was computed using the following formula

Dij~D2di,jz(D1{D2)vivj , ð6Þ

where D1 and D2 are the diffusion coefficients along and across the

fibers, v is the unit vector of fiber direction, i, j are Cartesian

indices, and di,j is the Kronecker symbol.

Numerical integration scheme and boundary conditions
The aim in this paper is to present a numerical procedure that

allows us to use the analytical representation of cardiac anatomy

and anisotropy described in the previous section. In particular, as

our anatomical model is just a map from a rectangular domain

c0#c#c1; 0#y#p/2; 0#w,2p to the shape of LV, we can

formulate our approach in that rectangular domain. The shape of

the heart, as well as anisotropy, will then be a curvilinear

coordinate system (1)–(2) defined on that domain. We need to

recalculate Eq. (4) with no-flux boundary conditions in those

coordinates. A long computation presented in appendix C results

in the following expression of the diffusion term:

div(D grad u)~
X

k

pk
: Lu

Ljk

z
X
k,l

qkl
: L2u

Ljk Ljl

, ð7Þ

where j1 = c, j2 = y, j3 = w, and pk and qkl are coefficients given by

the explicit analytical Eqs. (C.12) and (C.13) that depend only on

the geometry of the LV and on the diffusion matrix. This

representation is similar to that presented by Sridhar et al. in [30].

However, in our work, it was done for the 3-D case and for a

special form of the diffusion matrix (see Eq. (6)).

For numerical integration of the model (B.1)–(B.3), (4), (5), we

use the explicit finite difference method on a discrete grid in the (c,

y, w) space. We initially use a uniform grid with the c-indices of

the nodes denoted as i = 0, 1, … nc; the y-indices as j = 0, 1, … ny;

and the w-indices as k = 0, 1, … nw.

Although this grid is uniform in the (c, y, w) space, it is non-

uniform in real space because distances between the grid points

substantially decrease when y approaches p/2, which is similar to

the situation at the pole in a polar CS. Note, however, that even

the cubic Cartesian lattice in real space is not uniform with respect

to anisotropic diffusion due to the curved space interpretation of

anisotropy [31,32]. To account for this problem, we exclude some

points from our uniform grid in the following way. We first choose

a threshold value of distance dmin. Then, at c = c1 (i.e., at the

epicardial surface) and any given y = yj, we calculate the distances

between the node at w = 0: (c = c1, y = yj, w = 0) and node (c = c1,

y = yj, w = wk). We find minimal k satisfying two conditions: (1) the

distance to the k-node from the node at w = 0 is more than the

threshold value dmin; and (2) k is a divisor of nw. We denote this

number as Kj (as it depends on yj). If y is far from p/2, then Kj = 1

and we use all nodes of our uniform (ci, yj, wk) grid. When y
approaches the value of p/2, Kj.1 and we drop all nodes between

Figure 2. A spiral surface. The lines on the surface have equations
r = const and w = const. Color corresponds to height (z coordinate).
doi:10.1371/journal.pone.0093617.g002

Figure 3. A spiral surface viewed from the top (left panel) and
side (right panel). Two myofibers are displayed in red and black.
doi:10.1371/journal.pone.0093617.g003
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(c = c1, y = yj, w = 0) and (c = c1, y = yj, w = Kj), then the next node

will be (c = c1, y = yj, w = 2Kj) etc. Thus, only nodes with the w-

indices 0, Kj, 2Kj, … will be taken for evaluation of the Laplacian.

After each time step, we compute values for all variables of our

model in the omitted nodes using linear interpolation. With this

approach, we reduce the number of grid elements in the w-

direction in the apical region; otherwise, we would have needed to

lower the maximal time step in our explicit integration scheme,

which would have slowed our computations significantly.

The no-flux boundary condition in our problem is

nD grad u~0, ð8Þ

where n is a normal to surface. We rewrite this equation in our

special CS and obtain the following expression:

cc
Lu

Lc
zcy

Lu

Ly
zcW

Lu

Lw
~0, ð9Þ

where cc, cy, cw are coefficients given by Eqs. (D.14) and (D.16) in

Appendix D. In order to satisfy the boundary condition, we add

nodes at the domain boundaries in the following way. In the

special CS, the domain of integration is a rectangle (with periodic

boundary in w), and at y = p/2 we have a pole (i.e., also no

boundary). Therefore, we have only three boundaries, namely at

c = c0 (i.e., i = 0), c = c1 (i = nc), and y = 0 (j = 0). Fictitious layers

with (21, j, k), (nc +1, j, k), and (i, 21, k) are added. We then solve

equation (9) on the three boundary surfaces to find values in the

added nodes. Subsequently, we can compute Laplacian at all other

nodes in the domain using, if necessary, the values in the

additional nodes. Due to this procedure, all the nodes lying on the

boundaries will satisfy the boundary conditions.

We have programmed this approach using C in the CodeBlocks

IDE, a Mingw compiler. The calculations were performed in

operating systems Windows 7 and Linux. The OpenMP and MPI

technologies have been used for parallelization, and Paraview and

Irfan have been used for visualisation. The formal parameters of

our numerical scheme have been given in the methods section

above. Such an approach allows us to compute various regimes of

wave propagation in a model of LV with good representation of

boundary conditions and to study various effects of anisotropy on

wave propagation patterns.

We also studied the dynamics of scroll waves using the ten

Tusscher–Noble–Noble–Panfilov (TNNP) model [11] and various

anisotropy parameters. We initiated a scroll wave using the S1–S2

stimulation protocol and studied its dynamics 12 s. For drift

velocity and rotation period calculations, we take into account only

the last 8 seconds of the simulations to exclude transient processes.

We calculated average periods in the section w = 0, that is, x = r.

0, y = 0. Filaments were analyzed as reported in [6,33]. Finally, we

computed their average velocity v in the Cartesian CS.

Parameter values
We used the following parameters from Table 2 in [29]: the LV

equatorial radius re
b~23 mm, the equatorial wall thickness

le = 10 mm, the LV cavity depth ze
b~53 mm, the apical wall

thickness he = 7 mm, the conicity-ellipticity parameter E~0:9, and

the spiral surface torsion angle we
max~3p (see Fig. 3c in [29]). The

threshold distance between the adjacent nodes dmin was set to

0.3 mm. Currently, the first four parameters are measured using

modern experimental techniques such as MRI (see [34–36]). The

values used in our paper are in agreement with these experimental

data.

Our mesh had a distance of 0.2 to 0.3 mm between the nodes

and before the deletion of the nodes described above had nc = 40,

ny = 300, ny = 800. The diffusion coefficient along the fibers was

D1 = 0.3 mm2/ms. The diffusion coefficient across the fibers D2

was varied between different experiments depending on whether

we modeled isotropy or anisotropy.

We applied our approach to study the effect of anisotropy on

the spread of excitation in the heart. In particular, we initiated a

wave at several locations and studied how the wave arrival time

depends on the two main features of anisotropy. Our first

anisotropy parameter was the ratio of the diffusion coefficients

D1:D2 along and across the fibers. Also, we independently varied

the total rotation angle of fibers through the myocardial wall by

adjusting c0, c1 and keeping wall thickness constant. We also

compared our results with the spread of excitation in an isotropic

model of the LV where D1 = D2.

The dependency of wave velocity on the direction of

propagation in the heart was measured in [37–39]. Experimental

data show that the ratio of longitudinal to transverse conduction

velocities ranges between 3 [38] and 2.1 [39]. Since D / c2, where

c is wave velocity (see, e.g., [40]), we used the ratios

D1:D2 = 1:0.111 and D1:D2 = 1:0.25, which correspond to the

experimental data. These anisotropy ratios were also used in the

modeling studies [33,41–44].

For point stimulation, we increased the value of the variable u

from the resting potential of 286.2 mV to u = 0 mV at the first

time step in small regions located at three different sites. In the A

series, it was a small epicardial region at the apex; in the B series,

at the centre of LV epicardium; in the C series, at the centre LV

endocardium (see Table 2).

In this paper, we study the effect of the fiber rotation on the

spread of excitation. With this purpose, we generated a series of

LV models that differ in the total fiber rotation angle through the

myocardial wall. The parameters of the model are listed in Table 1.

Note that although the values of c0 and c1 differ between the

models, they affect only fiber rotation, and the LV geometry is

Table 1. Dependence of the total fiber angle on the model parameters c0,1.

Model c0 c1
The helix angle near the base at The total fiber

the epicardium the endocardium rotation angle a

1 0.3 0.55 213u 3u 16u

2 0.2 0.7 240u 29u 69u

3 0.1 0.85 269u 64u 133u

4 0 1 287u 87u 174u

doi:10.1371/journal.pone.0093617.t001
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exactly the same for all models due to the rescaling procedure

described in Sec. 1.4 in our previous article [27]. Also note that the

change in fiber rotation results in the change in fiber angle at the

epicardial surface (see column ‘‘a’’ of Table 1).

The time step was equal to 0.005 ms for the isotropic cases and

0.01 ms for the anisotropic ones.

We considered that a wave came to a node when the potential

in the node was more than 280 mV the first time.

Numerical Results

Activation maps
Figure 4 shows the wave arrival time after stimulation of the

small apical epicardial zone A for ratios D1:D2 equal to 1:0.111 or

1:0.25 (shown at the top of the figure) and four different rotation

angles of the fibers, which are displayed in the left column. We see

that in this first example, all the figures are axisymmetrical, which

is a consequence of the axisymmetric properties of our model and

the initial conditions.

We observe that for the low rotation angle (the upper row), the

speed of the upward wave propagation for the diffusion coefficient

ratio of 1:0.111 is substantially smaller than that for the ratio of

1:0.25. However, if the fiber rotation angle increases (the lower

rows), the difference in the speed between the two anisotropy

ratios decreases. For the rotation angle of 174u (the lower row), the

excitation patterns for both anisotropy ratios become close to each

other. Thus, we observe that fiber rotation increases the velocity of

the spread of excitation and also decreases the effect of anisotropy.

Let us now consider the case of lateral stimulation for a given

ratio of the diffusion coefficients of 1:0.111; the results for epi- and

endocardial stimulation are presented in Figs. 5 and 6. After

epicardial stimulation, the wave initially follows the fiber direction.

In Fig. 5, we note a displacement of the early activation zones (red)

due to the change in fiber direction at the epicardium in our

anatomical model (see column 4 of Table 1). However, for

endocardial stimulation (Fig. 6, the first column), the shift of the

early activation zone (red) on the epicardium is attenuated by fiber

rotation. As in Fig. 5, we see that an increase in the rotation angle

causes a decrease in the arrival time. In addition, in the second

column in Fig. 5, the excitation patterns have a clear V shape on

the surface opposite the stimulation site, which is a mere

consequence of the shape of the heart (see [3,4]).

Figs. 7 and 8 show the arrival time after lateral stimulation in a

case of decreased anisotropy, i.e., for a diffusion coefficient ratio of

1:0.25. The excitation patterns resemble those from Fig. 5 and

Fig. 6 respectively, with similar effects of fiber rotation on the

epicardial stimulation and V-shaped patterns. Here, we also

observe that an increase in the rotation angle decreases the overall

excitation time. A compensating effect of fiber rotation on the

degree of anisotropy can be noted. The difference between the

corresponding panels in Fig. 5 and Fig. 7 (and also Fig. 6 and

Fig. 8) is more pronounced for a lower fiber rotation rate (rotation

angle 16u).

Average speed of excitation
Now let us quantify the effects of rotation and anisotropy on

wave propagation. In order to do this, we use the following

procedure. We group all points of the heart to bins differing by

their ‘‘distance’’ from the stimulation point. We define the distance

as the arrival time from the stimulation to a given point. To

calculate the distances, we perform simulations in which we

initiate a wave at the same locations as in Figs. 4–8. However, for

the isotropic medium, we use a diffusion coefficient of

D1 = D2 = 0.3 mm2/ms. We generate 40 groups in which points

differ in the arrival time by 2 ms. Then we determine the average

arrival time for each of these groups for various anisotropic

conditions and compare these arrival times to the arrival time in

the isotropic model. As in the isotropic model, the velocity of wave

propagation in all directions is the same; this dependence gives us

the dependence of the wave arrival time on the distance from the

stimulation point.

In Fig. 9, the red lines correspond to a = 174u and the black

lines correspond to a = 16u fiber rotation angle in the LV wall. The

Table 2. The initial excitation areas.

Series c-indices y-indices w-indices area

A i$nc24 j$ny24 all apical epicardium

B i$nc24 |j2(ny/2)|#2 k#4 central epicardium

C i#4 |j2(ny/2)|#2 k#4 central endocardium

doi:10.1371/journal.pone.0093617.t002

Figure 4. Arrival times, in ms, of the waves after point
stimulation at the apex for various values of anisotropy and
fiber rotation. The values of anisotropy are shown at the top of the
figure and the values of the fiber rotation are shown in the left column.
For details, see Table 1. Arrival times are color-coded in ms.
doi:10.1371/journal.pone.0093617.g004

Wave Propagation in the Anisotropic Left Ventricle
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fact that the red lines are always located below the black lines

shows that the increase of the fiber rotation angle results in faster

wave propagation.

Also, all solid lines correspond to D1:D2 = 1:0.111, while dashed

lines correspond to D1:D2 = 1:0.25. If we now compare the solid

and dashed lines of the same color (third column in Fig. 9), we see

that the red lines are closer to each other than the black lines. This

indicates that in presence of higher fiber rotation (the red lines) the

decrease of D2 (i.e., solid vs. dashed) has a smaller effect on the

arrival time. This once again illustrates that anisotropy is

compensated for by the rotation of the fibers.

In addition, we see in Fig. 9 that the red lines always have a less

steep slope than the corresponding black lines. As going from black

to red shows an increase in fiber rotation, we can conclude that the

increase in rotation makes propagation faster in all cases.

Scroll wave dynamics
We have also studied scroll wave dynamics for the same values

of anisotropy and fiber rotation. We generated a single scroll wave

located approximately at the middle between the apex and the

base of the ventricle and studied its behavior for different model

parameters c0, c1 and D1:D2. We found that anisotropy

substantially affects the dynamics of scroll waves. In all cases,

the increase in the fiber rotation angle results in a decrease in the

period of scroll wave rotation (Fig. 10). We see that for

D1:D2 = 1:0.25, when the fiber rotation angle is increased from

16u to 174u, the period drops significantly, from 277 to 257 ms.

For D1:D2 = 1:0.111, we see similar dependency. In addition, the

period for the same rotation angle for D1:D2 = 1:0.111 was slightly

longer than for D1:D2 = 1:0.25.

The scroll wave dynamics was also substantially affected by the

anisotropy. In all cases, we observed a drift of the filament (Fig. 11).

The drift always had two components, both in the vertical (y) and

circumferential (w) directions. The total velocity of drift (Fig. 12A)

was very small, about 1 mm/s, which is about 0.2 mm per

rotation; however, the drift was monotonic and persistent. The

value of velocity had no clear relationship with the rotation angle;

for D1:D2 = 1:0.25, we see some tendency for velocity decrease

with an increase in fiber rotation, while for D1:D2 = 1:0.111, the

dependency is strongly non-monotonic and it is maximal for the

intermediate values of the fiber rotation angle. The drift direction

can be seen from the sign of the vertical and horizontal

components of the velocity (Figs. 12B, C). Here again, the

direction is affected by the rotation angle; however, we also did not

find any clear tendency for either drift to the apex or base of the

heart depending on the rotation angle.

For D1:D2 = 1:0.25, the initial scroll wave was always stable and

did not break down to multiple scroll waves. For D1:D2 = 1:0.111,

we did observe formation of the additional sources of excitation.

However, in most cases, they appeared simultaneously at a

substantial distance from the initial filament and not as a result of

filament buckling and breakup due to rotational anisotropy in the

way it was reported in [33]. The onset of new sources had a clear

correlation with the fiber rotation angle (Fig. 13). We did not

observe any instabilities for small and big a (models 1 and 4 in

Table 1, Figs. 13A, D), however, for intermediate and large values

of a (Figs. 13B, C), we observed new sources, and their number

increased with the increase of the fiber rotation angle (compare

panels B and C). Note that cases presented in panels B and C

Figure 5. Arrival times, in ms, of the waves after point
stimulation at the epicardial surface for a large anisotropy
ratio D1:D2 = 1:0.111. The notation is the same as in Fig. 4.
doi:10.1371/journal.pone.0093617.g005

Figure 6. Arrival times, in ms, of the waves after point
stimulation at the endocardial surface for a large anisotropy
ratio D1:D2 = 1:0.111. The notation is the same as in Fig. 4.
doi:10.1371/journal.pone.0093617.g006
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correspond to the largest drift velocities of a scroll wave; thus, the

onset of secondary filaments may be related to the filament drift.

We have also studied change in filament shape over time. For

small values of total fiber angle a, the filament remained

transmural, nearly straight, and stable. This case is shown in

Fig. 13A. For intermediate a equal to 69u and 133u, the filament

not only drifted faster but also deformed to a transmural S or L-

shape (Fig. 13B). For larger values of a, the filament again had a

nearly straight shape (Fig. 13D).

Discussion

In this paper, we used our recent anatomical model of the LV of

the human heart using a special CS (c, y, w) which gives an explicit

analytical map from a rectangular domain to the heart shape and

fiber orientation field. This allowed us to represent the heart’s

geometry on a rectangular grid and explicitly write expressions for

boundary conditions. This approach may be helpful for studies of

any phenomena in which boundary effects are of great impor-

tance.

One important feature of our model is the possibility to change

the properties of anisotropy. The most significant characteristic of

LV anisotropy is the rotation of myocardial fibers through the

myocardial wall. As shown in [45], relatively simple rule-based

global models of LV myofiber directions yield no worse results

than complicated image-based locally optimized models. Since any

locally optimized model needs to be regular enough and the

regularity requires smoothing and interpolation, no image-based

model can be an untouched copy of a real heart.

We can change the degree of the fiber rotation in a consistent

way and study its effect on normal and abnormal wave

propagation in the heart. In this paper, we investigated two main

features of wave propagation using the detailed human ventricular

electrophysiological model: the distribution of effective excitation

speed and the dynamics of transmural scroll waves.

In our study of the effect of the fiber rotation and anisotropy on

wave propagation, the initial stimulation area was located at the

apex and on the lateral epi- and endocardium of the LV. We

found that the rotation of myocardial fibers accelerates the spread

of excitation waves in the heart, which was explicitly demonstrated

using models with different fiber rotation angles. This acceleration

of wave propagation was discussed in [32]; it occurs because the

wave can propagate with maximal speed in more directions with a

larger rotation angle, which results in an overall faster wave

propagation. Note that if the rotation angle is 2p or more,

propagation with maximal speed will be possible in any direction,

and in the limit of a large medium, the arrival time will be the

same as in an isotropic medium with the velocity determined by

the velocity along the fiber [32]. We were able to demonstrate this

in an anatomical setup in which we explicitly changed the rotation

of the fibers, while in [32] such an assessment was made for a

single anisotropy configuration. While Young and Panfilov

represented the tissue as a simple rectangular 3-D slab with

plane–parallel fibers [32], we adopt a fully 3-D fiber architecture

together with an LV shape. In this paper, we particularly

considered a more realistic ventricular architecture and morphol-

ogy that includes the following features:

1. A more realistic method for the fiber rotation angle around the

axes [27], so called ‘‘Japanese-fan arrangement’’ [29]; and

2. A realistic change of the fiber rotation angle values due to the

displacement of the transmural axis from the LV apex to the

base [27].

Figure 7. Arrival times, in ms, of the waves after point
stimulation at the epicardial surface for an intermediate
anisotropy ratio D1:D2 = 1:0.25. The notation is the same as in Fig. 4.
doi:10.1371/journal.pone.0093617.g007

Figure 8. Arrival times, in ms, of the waves after point
stimulation at the endocardial surface for an intermediate
anisotropy ratio D1:D2 = 1:0.25. The notation is the same as in Fig. 4.
doi:10.1371/journal.pone.0093617.g008
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As in [32], our model also shows the faster excitation

propagation with an increase in the fiber rotation angle and a

decrease in the anisotropy.

A second set of results in this paper concerns the dynamics of

transmural scroll waves. The negative correlation found for the

rotation period versus fiber rotation angle in Fig. 10 is different

from the observations in [46] made by Qu et al., who observed an

increasing period with a faster fiber rotation rate. Note, however,

that their simulations used in-plane fiber rotation, while we work

with a 3-D ventricular geometry. Both complementary cases can

Figure 9. Arrival times, in ms, as a function of the distance from the stimulation point for the apical (A), epicardial (B), and
endocardial (C) stimulation. The distance on the horizontal axis is measured in ms as the arrival time of the wave in the isotropic model (see text
for more details). The red lines represent numerical experiments for total rotation angle a = 174u; the black lines represent for a = 16u; and the blue
lines represent isotropy. The solid lines correspond to the case D1:D2 = 1:0.111, while the dashed lines correspond to the case D1:D2 = 1:0.25. The
vertical segments display minimal and maximal arrival times in each group of nodes. The average, min, and max arrival times are displayed on the
leftmost panels for D1:D2 = 1:0.111 and in the middle column for D1:D2 = 1:0.25. The right column compares the average arrival times.
doi:10.1371/journal.pone.0093617.g009
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be qualitatively explained on geometrical grounds. In [46], the

period was only affected by fiber rotation, which causes negative

intrinsic curvature R of the associated curved space [32]. By its

definition, negative geometrical curvature represents a saddle-like

space with positive angular deficit. More specifically, in a space

with curvature R, the circumference C of a circle (ball) with small

radius r amounts to [47]

C&2pr 1{
Rr2

12

� �
: ð10Þ

As the spiral tip in each cross-section needs to travel along a larger

closed path of length C before completing a period, negative R is

expected to increase the rotation period. Therefore, the trend

found in [46] can be expected if the fiber rotation is the main

determinant of the rotation period. In our present model,

however, a transmural filament consists of spiral waves’ tips in

different layers of constant depth c. These c-surfaces are sphere-

like and therefore have positive R. Thus, under normal

excitability, the sphericity of the LV will decrease the rotation

period [48,49]. We conclude that in general, the rotation period of

scroll waves in the heart may decrease or increase with increasing

fiber rotation angle a, depending on the relative strengths of the

competing effects of the fiber rotation rate and the extrinsic

curvature (sphericity) of the LV cavity.

Regarding the non-monotonic dependence of filament drift

velocity versus total rotation angle, we first note that the creation

of secondary filaments in the regime of intermediate a is consistent

with the clinical or experimental picture of a ‘‘mother rotor’’

during cardiac arrhythmias [50,51]. In such a scenario, the

primary filament (mother rotor) remains stable and creates

secondary sources that further disturb the electrical excitation of

the heart, leading to cardiac arrest. In our simulations, we also see

a similar situation with a stable mother rotor, which was always

sustained until the end of the simulation time, and secondary

excitation sources induced at some distance from it.

In addition to the direct simulation results detailed and

discussed above, our anatomical model [27] coupled to detailed

electrophysiological model [11] may prove useful in future studies

for the following reasons. First, our model can be used to

investigate the possible contribution of the LV geometry to the

propagation of the excitation waves. In particular, in certain heart

diseases (e.g. dilated and hypertrophic cardiomyopathy, eccentric

Figure 10. Scroll wave rotation period T, ms, as a function of total fiber rotation angle a, deg.
doi:10.1371/journal.pone.0093617.g010

Figure 11. Potential, mV, on the LV surface during scroll wave rotation (left) and tip trajectory for D1:D2 = 1:0.111 (red line) and for
D1:D2 = 1:0.25 (black line) (right). The results are shown for model 2 (c0 = 0.2, c1 = 0.7, see text and Table 1 for details).
doi:10.1371/journal.pone.0093617.g011
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and concentric cardiac hypertrophy, etc., see chapter 8 in [52]),

the shape of the ventricle becomes more spherical and the

thickness of the wall also increases. Such changes in geometry can

easily be accommodated in our model. In general, the study of the

effects of the LV geometry on excitation seems to be of great

importance because many cardiac pathologies tightly correlate

with changes in the LV geometrical characteristics. The LV

becomes more dilated near the apex and thicker near the base

during stress-induced (‘‘Takotsubo’’) cardiomyopathy, or transient

apical ballooning syndrome (see chapter 8 in [52]). Such

Figure 12. Velocity of scroll wave filament drift for the simulation of 8 s. Average filament velocity Vc, mm/s (A). Velocity components
multiplied by 1000, per second: latitudinal component vy (B) and longitudinal component vw (C).
doi:10.1371/journal.pone.0093617.g012
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remodeling of the LV geometry might be mimicked in similar

mathematical models via the fitting of the geometric parameters

values to account for the LV shape of a particular pathology.

The results of our simulations can be verified by direct

measurements of wave propagation on the whole heart prepara-

tions, such as [53]. Note, however, that another factor important

for overall excitation of the heart is the Purkinje conduction

system. In order to compare experiments with our simulations,

such measurements should be performed after chemical ablation

of the Purkinje system [54].

Another potentially interesting application of this approach may

be its application in studies on the defibrillation of cardiac tissue, in

which case tissue texture and boundary conditions are also of key

importance [55]. However, a bi-domain representation of cardiac

tissue must be used for defibrillation [55–57], which does not fall

under our present scope. Nonetheless, the extension of our

approach for such cases is straightforward. The formulae for the

diffusion term (7) and for the boundary conditions (9) can be

directly used for representation of the bi-domain equations in the

special CS. Then, the finite difference problem can be formulated

in the same way as in our case and can be solved using any existing

method (see [58]).

In this paper, we studied wave propagation due to point

stimulation and scroll waves. Other important wave propagation

regimes include various types of scroll waves and turbulent patterns

[19,59–61]. It was shown that heterogeneity [62,63] and anisotropy

[31,64,65] of the tissue are significant factors determining the

dynamics of these sources. The effect of heterogeneity on the

dynamics of spiral waves was also studied in a series of papers by

Shajahan, Sinha and co-authors [30,41,55,67]. In particular, in [66]

they showed that some changes in the position, size, and shape of a

conduction inhomogeneity can transform a single rotating spiral to

spiral breakup or vice versa. Since our model provides tools for

changing anisotropic properties and allows one to add heterogene-

ity, these effects can also be studied using our approach.

Appendices

A Construction of spiral surfaces
We model myocardial sheets as surfaces filling the LV. The

filling was obtained by rotation of one surface around the vertical

LV symmetry axis. We call these surfaces ‘‘spiral’’ (see Fig. 2).

We introduce the special CS (c, y, w), which is linked with the

cylindrical CS (see (1) and (2)). In this CS, the equation of the

spiral surface is

w(c,y)~w0zwmaxc, ðA:1Þ

where different values of w0 allow us to obtain different spiral

surfaces and wmax is a constant of the model.

The parametrical equation of a spiral surface in cylindrical CS is

r(c,y) ~ rbz 1{cð Þlð Þ E cos yz 1{Eð Þ 1{ sin yð Þð Þ,
w(c,y) ~ w0zwmaxc,

z(c,y) ~ zbz 1{cð Þhð Þ 1{ sin yð Þz 1{cð Þh:

Figure 13. Scroll wave filaments in the LV model. The anisotropy ratio is D1:D2 = 1:0.111. Panels A, B, C, D: models 1, 2, 3, 4 (see Table 1), fiber
rotation angle in the LV wall increases from panel A to panel D. The epicarduim (semitransparent colored surface; color denotes height from the red
base to the purple apex), the endocardium (opaque white meshy surface), and filaments (black lines and dots).
doi:10.1371/journal.pone.0093617.g013
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B The myofibers’ equations
The equations are (see Fig. 3):

r(W)~
Y

sinW
: rb{

l

p
W

� �
,

w(W)~wmaxW=p,

z(W)~zss(r(W),w(W)),

where different values of the parameter Y M (0, 1) correspond to

different myofibers,

W [ arcsin Y ,p{ arcsin Y½ �,

zEss(r,w) is the explicit equation of a spiral surface in the cylindrical

CS.

At each point (c, y, w), 0#y#p/2, a fiber orientation vector

v = (x9, y9, z9) is given by the formulae:

x’~
dr

dW
cos w{r sin w

dw

dW
, ðB:1Þ

y’~{
dr

dW
sin wzr cos w

dw

dW

� �
, ðB:2Þ

z’~
Lz

Lr
: dr

dW
z

Lz

Lw
: dw

dW
, ðB:3Þ

where r is determined by Eq. (1),

W~p(1{c),

dr

dW
~Ec

: (rbzcl) cot (cp){
l

p

� �
,

dw

dW
~

wmax

p
,

F ’~ cos y

Es

,

Lz

Lr
~

zbz 1{cð Þh
rbz 1{cð Þl

:F ’,

Lz

Lw
~

1

wmax

: h sin yz
F ’Ecl zbz 1{cð Þhð Þ

rbz 1{cð Þl

� �
,

where wmax is a dimensionless parameter affecting fiber twist.

C Laplacian in implicit curvilinear coordinates
The Laplacian is an important term in the reaction-diffusion

equation as it is responsible for the modeling of electrical wave

spreading. It can be written as div(D grad f) where f is the

transmembrane potential and D is an anisotropic local diffusion

matrix.

Below, we calculate the Laplacian for anisotropic diffusion in

the Cartesian and the special CS.

C.1 The Cartesian CS. For an arbitrary diffusion matrix

D = Dij

div(D grad f )~
X

i,j

LDji

Lxj

: Lf

Lxi

z
X

i,j

Dij L2f

Lxi Lxj

: ðC:1Þ

In consideration of Eq. (6), one can write:

div(D grad f )~(D1{D2):
X

i,j

L vivj

� �
Lxj

: Lf

Lxi

z
X

i,j

Dij L2f

Lxi Lxj

:ðC:2Þ

C.2 The curvilinear CS. Here we deduce from Eq. (C.2) the

proper form of the Laplacian in the curvilinear coordinates j0, j1,

j2. Let us consider vi and f as functions of j0, j1, j2 We calculate

three types of derivatives. First, one has

L vivj

� �
Lxj

~
Lvi

Lxj

:vjz
Lvj

Lxj

:vi, ðC:3Þ

where

Lvi

Lxj

~
X

k

Lvi

Ljk

: Ljk

Lxj

: ðC:4Þ

Secondly, we evaluate

Lf

Lxi

~
X

j

Lf

Ljj

: Ljj

Lxi

; ðC:5Þ

and thirdly,

L2f

Lxi Lxj

~
X

k

L2f

Lxi Ljk

: Ljk

Lxj

, ðC:6Þ

where

L2f

Lxi Ljk

~
X

j

L2f

Ljk Ljj

:
Ljj

Lxi

: ðC:7Þ

The difficulty now lies in the fact that the functions xj(jk) define

the jk only implicitly. To evaluate the necessary derivatives, we

need the following matrices:

J~(Jij)~
Lji

Lxj

� �
, ðC:8Þ

Wave Propagation in the Anisotropic Left Ventricle

PLOS ONE | www.plosone.org 12 May 2014 | Volume 9 | Issue 5 | e93617



www.manaraa.com

W~(Wij)~
Lvi

Lxj

� �
, S~(Sij)~

Lvi

Ljj

� �
, ðC:9Þ

Tk~(Tk
ij )~

L2jk

Lxi Lxj

 !
, Hk~(Hk

ij )~
L2xk

Lji Ljj

 !
: ðC:10Þ

The matrices are linked between themselves with the following

relations:

W~SJ, ðC:11Þ

Tk
mp~{

X
l

Jkl(J
T HlJ)mp:

We substitute (C.3), (C.5), (C.7) to (C.2) and get:

div(D grad f )~
X

k

pk
: Lf

Ljk

z
X
k,l

qkl
: L2f

Ljk Ljl

,

where

pk~D2 tr Tkz(D1{D2): (Jv)k
:tr(SJ)z(JSJv)kzvTTkv

� �
, ðC:12Þ

qkl are elements of matrix Q:

Q~JDJT: ðC:13Þ

D Boundary conditions
Let n be a normal vector to one of the LV boundary surfaces.

For outer domain boundaries, we use a no-flux condition on the

current.

D.1 Isotropic case, cylindrical CS. One can write the

boundary condition as

Lf

Ln
(r,w,z)~0: ðD:1Þ

By the definition of directional derivative and since the normal

vector to the LV boundary lies in our problem always in the

corresponding meridional half-plane,

Lf

Lr
nrz

Lf

Lz
nz~0, ðD:2Þ

where nr and nz are the normal vector components in the

meridional half-plane.

D.1.1 The equator. On the equator, nr = 0, so (D.2) reduces

to

Lf

Lz
~0: ðD:3Þ

D.1.2 The epicardium. On the epicardium, nr = (zb+h) cos y,

nz~{ rbzlð ÞEs, so one can write (D.2) as

Lf

Lr
:(zbzh) cos y{

Lf

Lz
:(rbzl)Es~0: ðD:4Þ

Everywhere on the epicardium, except the apex,

Lf

Lr
~

(rbzl):Es

(zbzh): cos y
: Lf

Lz
: ðD:5Þ

On the apex, cos y = 0, Es~Ew0, so the boundary condition

looks like
Lf

Lz
~0.

D.1.3 The endocardium. On the endocardium, nr = zb cos

y, nz~{rbEs, so (D.2) can be written as

Lf

Lr
:zb cos y{

Lf

Lz
:rbEs~0: ðD:6Þ

Everywhere on the endocardium, except the apex,

Lf

Lr
~

rbEs

zb cos y
: Lf

Lz
: ðD:7Þ

On the apex of the endocardium, like the epicardium, the

boundary condition is
Lf

Lz
~0.

D.2 Isotropic case, special CS. In the special CS, we use
Lf

Lc
and

Lf

Ly
. Let us take into account that

Lf

Lr
~

Lf

Lc
: Lc

Lr
z

Lf

Ly
: Ly

Lr
ðD:8Þ

and

Lf

Lz
~

Lf

Lc
: Lc

Lz
z

Lf

Ly
: Ly

Lz
: ðD:9Þ

D.2.1 The equator. Formula (D.3) can be rewritten as

Lf

Ly
~

rbz 1{cð Þlð Þ 1{Eð Þ
l

: Lf

Lc
: ðD:10Þ

D.2.2 The epicardium. Formula (D.4) becomes

Lf

Lc
~

l rbzlð ÞEcEs{ zbzhð Þh sin y cos y

(zbzh)2 cos2 yz(rbzl)2E2
s

: Lf

Ly
: ðD:11Þ

D.2.3 The endocardium. Formula (D.6) yields

Lf

Lc
~

lrbEcEs{zbh sin y cos y

z2
b cos2 yzr2

bE
2
s

: Lf

Ly
: ðD:12Þ
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Note that if Ew0, the two last formulae cannot have zero values

in the denominators and can be directly applied to the LV apex

points.
D.3 Anisotropic case, special CS. The boundary condition

is

nD grad f ~0, ðD:13Þ

with n, the normal to the LV surface.
D.3.1 The epi- and endocardium. Let us write (D.13) in

detail:

X
i,j

niD
ij Lf

Lxj

~0;

X
i,j

niD
ij :
X

k

Lf

Ljk

: Ljk

Lxj

 !
~0;

X
k

X
i,j

niD
ij Ljk

Lxj

 !
: Lf

Ljk

~0;

nTDJc Lf

Lc
znTDJy Lf

Ly
znTDJw Lf

Lw
~0: ðD:14Þ

Here, the Jc,y,w are columns of derivatives of these special variables

by Cartesian coordinates (see (C.8)):

Jc~

Lc=Lx

Lc=Ly

Lc=Lz

0B@
1CA,

and so on.
D.3.2 The equator. Let us write (D.13) detailed as the

following:

nx(D grad f )xzny(D grad f )yznz(D grad f )z~0: ðD:15Þ

Vector n is collinear to the Oz axis, so nx = ny = 0. The equation

(D.15) goes over

(D grad f )z~0:

Writing down the matrix product:

X
j

D2j Lf

Lxj

~0,

we substitute (C.5) to this equation:

X
k

X
j

D2j Ljk

Lxj

 !
Lf

Ljk

~0:

Let us express
Lf

Ly
:

Lf

Ly
~

{

D20cxzD21cyzD22cz

� � Lf

Lc
z D20wxzD21wyzD22wz

� � Lf

Lw

D20yxzD21yyzD22yz

:

We can calculate the derivatives of c, w, y by x, y, z:

cx~crrx~{
cos w

l
; cy~crry~{

sin w

l
; cz~

rm(1{E)
zml

;

wx~{
sin w

r
; wy~

cos w

r
; wz~0;

yx~yy~0; yz~{1=zm;

here, rm = rb+(12c)l, zm = zb+(12c)h.

So

Lf

Ly
~

{

{ D20xzD21y
� �

zmzD22r2 1{Eð Þ
� � Lf

Lc
zzml: {D20 sin wzD21 cos w

� � Lf

Lw

D22lr
:

ðD:16Þ
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